If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/3t^2+19=83
We move all terms to the left:
1/3t^2+19-(83)=0
Domain of the equation: 3t^2!=0We add all the numbers together, and all the variables
t^2!=0/3
t^2!=√0
t!=0
t∈R
1/3t^2-64=0
We multiply all the terms by the denominator
-64*3t^2+1=0
Wy multiply elements
-192t^2+1=0
a = -192; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-192)·1
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*-192}=\frac{0-16\sqrt{3}}{-384} =-\frac{16\sqrt{3}}{-384} =-\frac{\sqrt{3}}{-24} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*-192}=\frac{0+16\sqrt{3}}{-384} =\frac{16\sqrt{3}}{-384} =\frac{\sqrt{3}}{-24} $
| t-2.05=12 | | 16z^2-8=17 | | 50+10y=2(4y+7)+2(3y+2) | | 5x=92x-3 | | 16x^2-49x-4=0 | | 7p^2=49 | | 8x+16=18-13x-5 | | 20.84=8x | | x/44=2=4 | | 6x2+42=0 | | 12k-27=3(2k+3) | | 22x-6=21x=16 | | 13x=9x-8 | | ((12k-27)/3)-3=3+2k | | -(5x)=25 | | 10x^2-11x-15=-8 | | 16=-0.5x^2+25x-150.5 | | 12x-5/12=11x+5/18 | | X2-2x=3024 | | 6x-3=5*2x-5*3 | | f−52=156 | | 3x=11=4x+2+2x | | 1000=100/x | | 73+t=414 | | 4(y-2)+y=5y-8 | | -74=d+37 | | (6x-3/5)+3=2x | | 11(x)+5/8=12(x)-5/12 | | 5x+10=6x-12 | | 5(x-36)-(x+36)=48-2(x-48) | | -9(-7x+2=-459 | | 7/x-1+4/x=9/x |